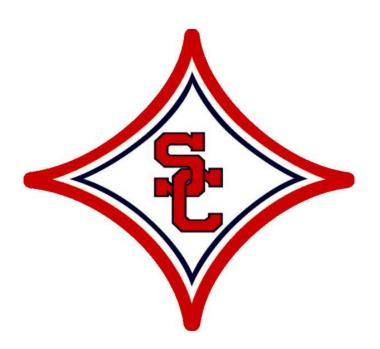
SANDY CREEK HIGH SCHOOL SUMMER REVIEW PACKET


For students entering A.P. CALCULUS

By signing below, I acknowledge that I worked every problem on this assignment myself. While I was allowed to seek help from others, I did not copy someone else's work and submit it as if it was my own.

Printed Name: _____

Signature: _____

Date: _____

- 1. This packet is to be handed in to your Calculus teacher on the first day of the school year.
- 2. All work must be shown in the packet, next to the problem. Circle final answers.
- 3. You are expected to do this packet without a calculator.
- 4. Completion of this packet is worth one-half of a major test grade. It will be graded as follows: Packet completed with all work shown = 25 points
 - Five randomly selected problems graded for accuracy @ 5 points each = 25 points
- 5. You will have a multiple choice Calculus Readiness Test on the first day of the school year that also will be worth one-half of a major test grade.
- 6. You will have a quiz on the first day of the school year over your understanding of the unit circle that will be worth one quiz grade.
- *Note: In calculus, you ALWAYS use RADIAN mode. No answers should ever be in degrees.

*Note: Decimal answers should be accurate to three decimal places. However, since this is a no calculator packet, you should provide exact answers. For example: Write $\sqrt{3}$, not 1.732.

Statement	True or False?	Correction/Explanation if false
(x + 2)(x - 3) = 5 x + 2 = 5 or x - 3 = 5 x = 3 or x = 8		
$\frac{3x-5}{6} = \frac{x-5}{2}$		
$\frac{14x - 12w}{10 + 6y} = \frac{7x - 6w}{5 + 3y}$		
$(x + 5)^2 = x^2 + 25$		
If $1 = \sqrt{2x + 7} - \sqrt{x + 3}$, then $1^2 = (\sqrt{2x + 7})^2 - (\sqrt{x + 3})^2$		
$\sqrt{\chi^2 + 49} = \chi + 7$		
$\sqrt{49x^2} = 7x$		
$\sqrt{9} = \pm 3$		
If $x^2 = 9$, then $x = \pm 3$.		
$x^2 + x^2 = x^4$		
$\frac{x+5x^2}{x}=5x$		
Solve for x: $x^2 = 4x$ I can divide both sides by x and I get x = 4.		
f(x) = -x ² f(-3) = -9		

f(x) = x ² f(-3) = -9	
$\left(3\cdot w^3\cdot x^4\right)^2=3w^6x^8$	
$\frac{y}{7x^{-1}} = 7xy$	
2(3-g)(4+z) = (6-2g)(8+2z)	
$2(5x) = (2 \cdot 5)(2 \cdot x)$	
ln(x) means the natural logarithm multiplied by x.	
sin(x) means the sine function multiplied by x.	
$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$	
$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$	
$\frac{(x-3)x-x^2(x+1)}{(x-3)}=x-x^2(x+1)$	
ln(x + e) = ln(x) + ln(e)	
$2^{x+4} = 2^x + 2^4$	
$\cos^2 x = (\cos x)^2$	
cos ⁻¹ x = sec x	

$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{3}$	
If I subtract x - b from a, I get a - x - b.	
(5a)(5b) = 5(ab)	
$3(x+6)^2 = (3x+18)^2$	
$\frac{1}{3x} = \frac{1}{3}x$	
$\frac{x}{3} = \frac{1}{3}x$	

2. What is the point/slope form for the equation of a line?

3. Write the equation of the line whose slope is -4 and passes through (-3, 2).

- 4. Write the equation of the line parallel to 3x 2y = 8 that passes through the point (2, 5).
- 5. Write the equation of the line perpendicular to 3x 2y = 8 that passes through the point (2, 5).
- 6. Find the average rate of change of $f(x) = x^2 + 6x 10$ from x = 2 to x = 4.

7. Find
$$\frac{f(x+h)-f(x)}{h}$$
 for the given function f:
a) $f(x) = 9x+3$ b) $f(x) = 5-2x$

8. Graph
$$f(x) = \begin{cases} -1 & if \quad x \le -2 \\ 1+x & if \quad -2 < x \le 2 \\ 2x & if \quad x > 2 \end{cases}$$

10	
8	
6	
4	
2	
-5 -4 -3 -2 -1	1 2 3 4 5
-2	
-4	

Find the following:

f(-3) = _____ f(-2) = _____ f(-1) = _____ f(0) = _____ f(1) = _____ f(2) = _____ f(3) = _____
9. Let
$$f(x) = 1 + \frac{1}{x}$$
 and $g(x) = \frac{3}{\sqrt{x}}$. Find $f(g(x))$.

10. Solve the system of equations:
$$\frac{2x - 3y = -21}{5x + 6y = 15}$$

11. Is the function even, odd, or neither. Justify your answer using f(x), f(-x) and -f(x).

a)
$$f(x) = \frac{x}{x^2 - 1}$$

Even, odd, or neither?

REMINDER NOTES FOR RATIONAL FUNCTIONS

Use the original problem for step 1.

- 1. Horizontal Asymptote / Slant Asymptote
 - deg N < deg D
 H.A. @ y = 0
 - deg N = deg D H.A. & y = ratio of leading coefficients
 deg N > deg D no H. A.; Use long division to

find slant asymp.

Factor the numerator and denominator, but do not cancel yet.

- 2. Domain
 - Look at the denominator before you cancel and see what makes the bottom equal to zero.
 - $\Re \neq \text{those x-values}$

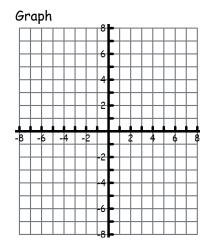
Now, cancel and simplify.

b) $f(x) = x^3 + 2x^2 - 1$

f(-x) = _____ -f(x) = _____

Even, odd, or neither? _

- 3. Holes If nothing cancels, there is not a hole. Set the canceled factor = 0. That is the x-coordinate of the hole. To get the y-coordinate, plug that x-value into the simplified function. Vertical Asymptotes 4. Set the denominator of the simplified function = 0 and find x. x = that value is the vertical asymptote 5. x-intercepts (zeros) Set the numerator of the simplified function = 0 and find х. (____,0) 6. y-intercept Plug in zero for all the x's in the simplified function and evaluate it.
 - (0,____)


12. Identify all the necessary parts of the following rational functions and sketch it. Write "none" where applicable.

(a) f(x) =
$$\frac{3x^2 - 6x - 9}{x^3 - 9x}$$

Horizontal Asymptote	
Slant Asymptote	
Hole(s)	
Vertical Asymptote(s)	
Domain	
x-intercepts	
y-intercepts	

(b)
$$f(x) = \frac{2x^2 + 10x + 12}{x^2 + 3x + 2}$$

Horizontal Asymptote	
Slant Asymptote	
Hole(s)	
Vertical Asymptote(s)	
Domain	
x-intercepts	
y-intercepts	

13. Simplify each expression.

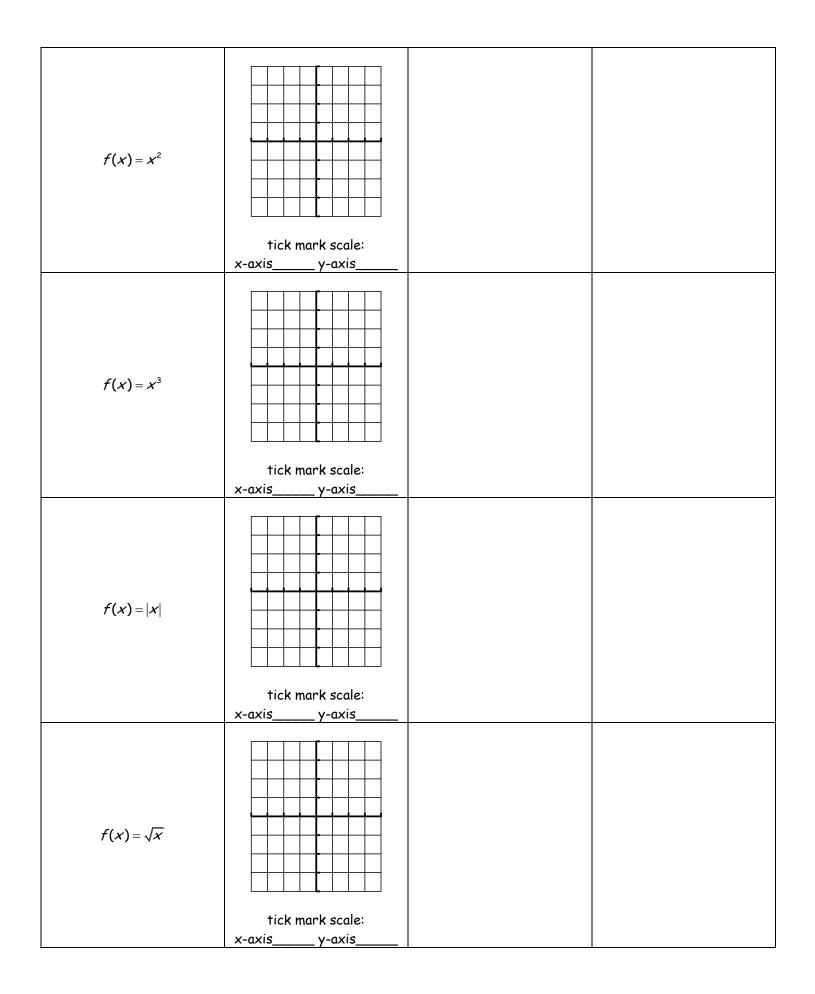
a) $\frac{x^4 \cdot x^7}{x^6}$

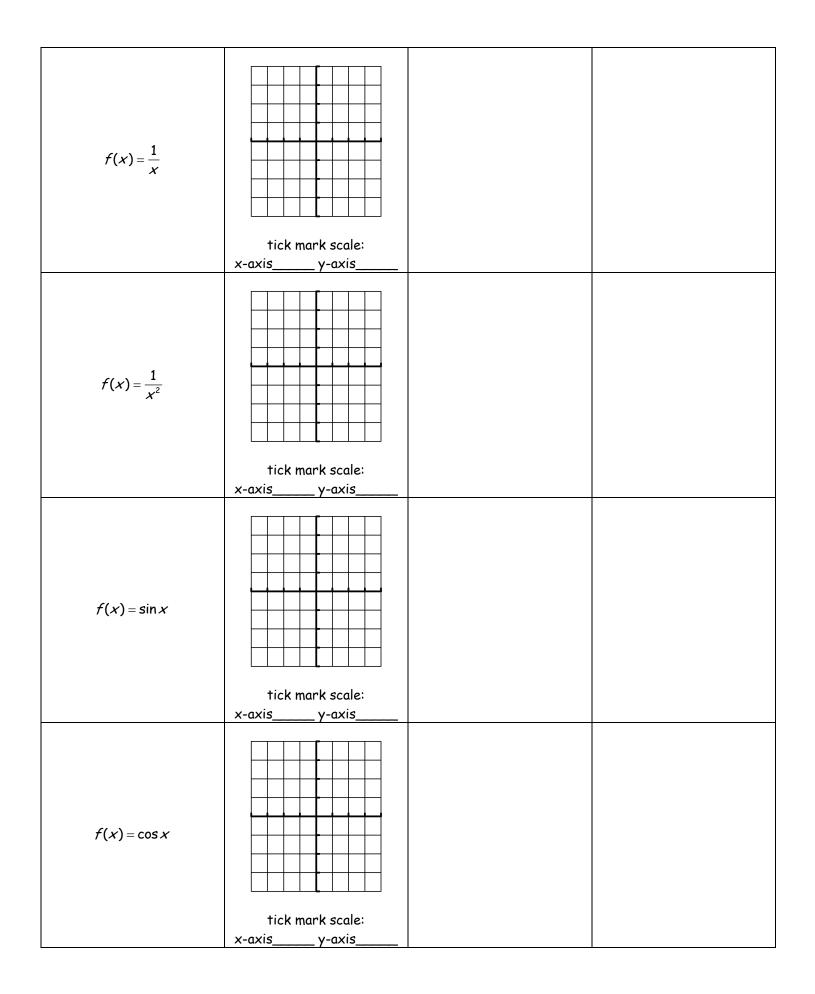
$$\frac{x^2y^5}{(x^2)^4}$$

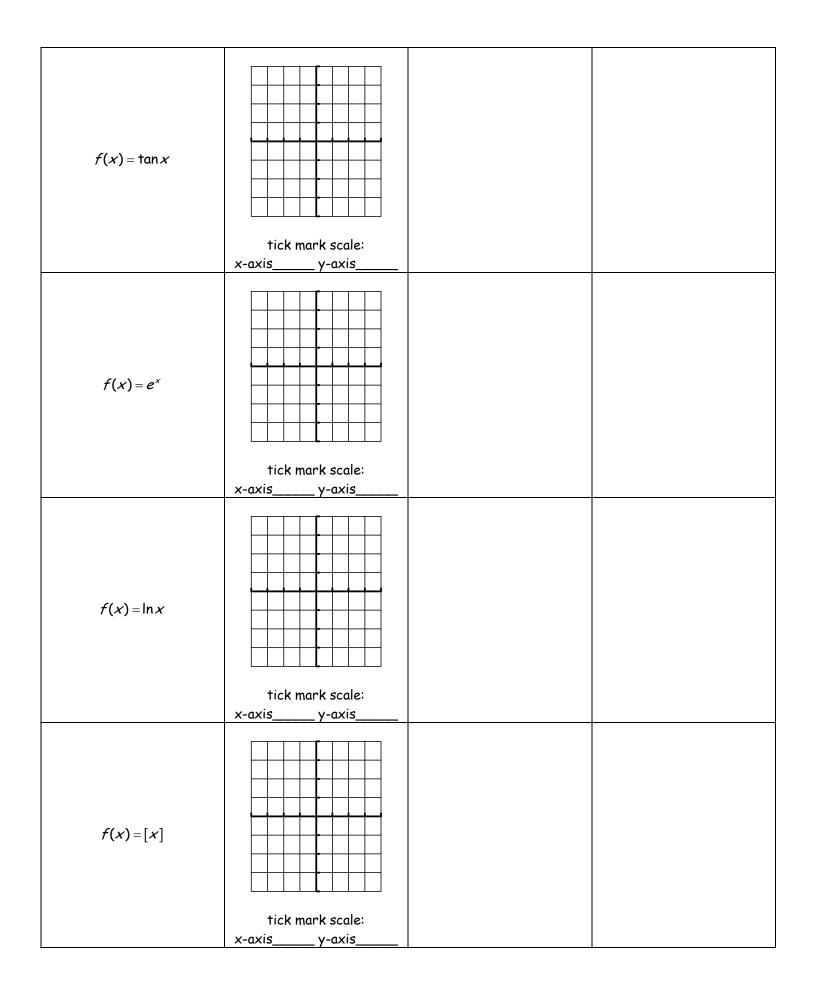
c)

14. Evaluate each expression.

a)
$$(27a^6)^{\frac{1}{3}}$$
 b) $27^{\frac{2}{3}}$ c) $(\frac{3}{4})^{-1}$


- 15. Write each equation in exponential form. a) $\log_{27} 3 = \frac{1}{3}$
- 16. Write each equation in logarithmic form. a) $10^2 = 100$
- b) $\log_{16}\frac{1}{4} = -\frac{1}{2}$
- b) e⁰ = 1


17. Use the Unit Circle to fill in the Chart. Give exact, reduced, rationalized answers.


	sin (O)	cos (Θ)	tan (Θ)	csc (Θ)	sec (O)	cot (Θ)
0						
$\frac{\pi}{6}$						
$\frac{\pi}{4}$						
$\frac{\pi}{3}$						
$\frac{\pi}{2}$						
$\frac{2\pi}{3}$						
$\frac{3\pi}{4}$						
$\frac{4}{5\pi}$						
ο <i>π</i>						
$\frac{7\pi}{6}$						
$\frac{6}{\frac{5\pi}{4}}$						
$\frac{4}{\frac{4\pi}{3}}$						
$\frac{3}{\frac{3\pi}{2}}$						
$\frac{5\pi}{3}$ 7π						
$\frac{11\pi}{4}$						
<u></u>						
2π						

18. Sketch a graph of the following functions and state the domain and range of each.

Function	Graph	Domain	Range
f(x) = x	tick mark scale:		

19.Solve each equation for x. Provide exact answers.a) $\log_x 5 = -1/3$ b) $\log_{10}(2x+5) = \log_{10}(5x-4)$ c) $\log_3(4x+5) - \log_3(3-2x) = 2$

d)
$$4^{x^2-1} = 12$$
 e) $2^x = 3^{x+3}$ f) $\log_3\left(\frac{27}{64}\right) = x$

20. Assume that x is positive, use properties of logarithms to write the expression as a single logarithm.

a)
$$\frac{8}{5}\log_n 2x^2 + \frac{2}{3}(\log_n 2 + \log_n x^2)$$
 b) $\frac{1}{6}\log_4 x^{10} + \frac{1}{8}\log_4 x^4 - \frac{1}{12}\log_4 x$.

21. Assume that x is positive, use properties of logarithms to write the expression as a sum or difference of logarithms.

a)
$$\ln\left(\frac{\sqrt[5]{30}}{x^3y^2}\right)$$
 b) $\ln\left(\sqrt[6]{\frac{\sqrt[3]{4x^9}}{z^8}}\right)$

22. Evaluate the expression without using a calculator.

a) $(3^2)^{\log_9 8}$ b) $e^{\ln \sqrt[4]{e}}$ c) $10^{\log \sqrt{43}}$ d) $\ln e^{931}$

- 23. a) Find the discriminant of $x^2 + 2x 2 = 0$.
 - b) Describe the nature of the roots of the equation.
 - c) Solve the equation by using the Quadratic Formula.
- 24. a) Find the discriminant of $2x^2 + 3x + 5 = 0$
 - b) Describe the nature of the roots of the equation.
 - c) Solve the equation by using the Quadratic Formula.

Inverse Trigonometric Functions

F	Inverse Trigonoi		6
Function	Graph	Domain	Range
y = arcsin (x) or sin ⁻¹ (x)	y = Arçsin (x) 1.57 0.785 -1 -1 -1.57	-1 <u>≤</u> x <u>≤</u> 1	$\frac{-\pi}{2} \le \gamma \le \frac{\pi}{2}$
y = arccos (x) or cos ⁻¹ (x)	y = Arccos (x) 3:14 2:355 1:57 0:785 -1 -1 -1	-1 ≤ x ≤ 1	0 ≤ γ ≤ π
y = arctan (x) or tan ⁻¹ (x)	y = Arçtan (x) 1.57 0.785 -4 -3 -2 -1 1 2 3 4 0.785 1.57	All reals	$\frac{-\pi}{2} \le \gamma \le \frac{\pi}{2}$

By restricting the domains and ranges, the inverse trig functions are actually functions.

- Evaluate the following. Remember you are in RADIAN mode. Give exact answers and don't forget the 25. restrictions as stated in the above table.
 - b) $\cos^{-1}(-1) =$ c) $\tan^{-1}(-\sqrt{3}) =$ sin⁻¹ (1) = _____ a) e) $\cos^{-1}\left(\frac{1}{2}\right) =$ f) $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) =$
 - tan⁻¹ (-1) = _____ d)

g) tan
$$\left(\cos^{-1}\frac{5}{13}\right)$$
= _____

- h) $\tan^{-1}(\cos(0)) =$ _____ i) $\sin^{-1}\left(\sin\frac{4\pi}{3}\right) =$ _____
- j) $\cos\left(\cos^{-1}\frac{1}{2}\right) =$ _____ k)

Find the algebraic expression equivalent to

$$\sin\left(\tan^{-1}\left(\frac{2x+3}{5x}\right)\right).$$

- 26. Let $4x^2 + 4y^2 24x + 32y + 36 = 0$
 - a) Explain how you know this equation is a circle.
 - b) Complete the square to convert from general form to standard form. Show all steps.
 - c) State the center and radius. center: _____ radius: _____
 - d) State the domain and range. domain: _____ range: _____
- 27. Let $16x^2 + 25y^2 96x 200y = -144$
 - a) Explain how you know that this is an ellipse by just looking at it.
 - b) Complete the square to convert from general form to standard form. Show all steps.

c) Graph the ellipse.

- 28. State the factoring rule for the following:
 - a) Difference of Two Squares: $a^2 b^2 =$ _____
 - b) Sum of Two Squares: a² + b² = _____
 - c) Difference of Two Cubes: $a^3 b^3 =$ _____
 - d) Sum of Two Cubes: a³ + b³ = _____

You should know the following identities:

Reciprocal Identities

$\sin \Theta = \frac{1}{\csc \theta}$	$\cos \theta = \frac{1}{\sec \theta}$	$\tan \Theta = \frac{1}{\cot \theta}$
$\csc \Theta = \frac{1}{\sin \theta}$	$\sec \theta = \frac{1}{\cos \theta}$	$\cot \Theta = \frac{1}{\tan \theta}$

Quotient Identities

 $\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$

Pythagorean Identities

1. $\sin^2 \theta + \cos^2 \theta = 1$ $(\sin^2 \theta = 1 - \cos^2 \theta)$ $(\cos^2 \theta = 1 - \sin^2 \theta)$

2. $\tan^2 \theta + 1 = \sec^2 \theta$ ($\sec^2 \theta - \tan^2 \theta = 1$) ($\tan^2 \theta = \sec^2 \theta - 1$)

3.
$$1 + \cot^2 \Theta = \csc^2 \Theta$$

 $(\cot^2 \Theta = \csc^2 \Theta - 1)$
 $(1 = \csc^2 \Theta - \cot^2 \Theta)$

Sum and Difference Identities

- 1. sin(A + B) = sin(A)cos(B) + sin(B)cos(A)
- 2. sin(A B) = sin(A)cos(B) sin(B)cos(A)
- 3. cos(A + B) = cos(A)cos(B) sin(A)sin(B)
- 4. cos(A B) = cos(A)cos(B) + sin(A)sin(B)

5.
$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

 $\tan A - \tan B$

6.
$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Double Angle Identities

1.
$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

2. $\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$
 $= 1 - 2\sin^2(\theta)$
 $= 2\cos^2(\theta) - 1$
3. $\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$